Moving Media Processo Time Series


Introduzione ai ARIMA: modelli non stagionali ARIMA (p, d, q) equazione di previsione: modelli ARIMA sono, in teoria, la classe più generale di modelli per la previsione di una serie di tempo che può essere fatto per essere 8220stationary8221 dalla differenziazione (se necessario), forse unitamente trasformazioni non lineari come registrazione o sgonfiando (se necessario). Una variabile casuale che è una serie temporale è stazionaria se le sue proprietà statistiche sono tutte costanti nel tempo. Una serie stazionaria ha alcuna tendenza, le sue variazioni intorno la sua media hanno una ampiezza costante, e dimena in modo coerente. ossia suoi schemi temporali casuale breve termine sempre lo stesso aspetto in senso statistico. Quest'ultima condizione implica che le sue autocorrelazioni (correlazioni con i propri precedenti deviazioni dalla media) rimangono costanti nel tempo, o equivalentemente, che il suo spettro di potenza rimane costante nel tempo. Una variabile casuale di questa forma può essere visto (come al solito) come una combinazione di segnale e rumore, e il segnale (se risulta) potrebbe essere un modello di regressione medio veloce o lento, o oscillazione sinusoidale, o rapida alternanza di segno , e potrebbe anche avere una componente stagionale. Un modello ARIMA può essere visto come un 8220filter8221 che cerca di separare il segnale dal rumore, e il segnale viene poi estrapolato nel futuro per ottenere delle previsioni. L'equazione di previsione ARIMA per una serie temporale stazionaria è un lineare (cioè la regressione-tipo) equazione in cui i predittori sono costituiti da ritardi della variabile dipendente Andor ritardi degli errori di previsione. Cioè: Valore atteso di Y un andor costante una somma pesata di uno o più valori recenti di Y eo una somma pesata di uno o più valori recenti degli errori. Se i predittori sono costituiti solo di valori ritardati di Y. si tratta di un modello autoregressivo puro (8220self-regressed8221), che è solo un caso particolare di un modello di regressione e che potrebbe essere dotato di un software di regressione standard. Ad esempio, un autoregressiva del primo ordine (8220AR (1) 8221) modello per Y è un modello di regressione semplice in cui la variabile indipendente è semplicemente Y ritardato di un periodo (GAL (Y, 1) in Statgraphics o YLAG1 in RegressIt). Se alcuni dei fattori predittivi sono ritardi degli errori, un modello ARIMA NON è un modello di regressione lineare, perché non c'è modo di specificare period8217s 8220last error8221 come una variabile indipendente: gli errori devono essere calcolati su base periodica-to-periodo quando il modello è montato dati. Dal punto di vista tecnico, il problema con l'utilizzo errori ritardati come predittori è che le previsioni model8217s non sono funzioni lineari dei coefficienti. anche se sono funzioni lineari dei dati passati. Così, i coefficienti nei modelli ARIMA che includono errori ritardati devono essere stimati con metodi di ottimizzazione non lineare (8220hill-climbing8221) piuttosto che da solo risolvere un sistema di equazioni. L 'acronimo ARIMA sta per Auto-regressiva integrato media mobile. Ritardi della serie stationarized nell'equazione di previsione sono chiamati termini quotautoregressivequot, ritardi della errori di previsione sono chiamati quotmoving termini averagequot, e una serie di tempo che deve essere differenziata da effettuare stazionaria si dice che sia una versione quotintegratedquot di una serie stazionaria. modelli casuali di tendenza modelli di livellamento esponenziale casuale passeggiata e, modelli autoregressivi, e sono tutti i casi particolari di modelli ARIMA. Un modello ARIMA nonseasonal è classificato come (p, d, q) modello quot quotARIMA, dove: p è il numero di termini autoregressivi, d è il numero di differenze non stagionali necessari per stazionarietà, e q è il numero di errori di previsione ritardati in l'equazione di previsione. L'equazione di previsione è costruito come segue. In primo luogo, Sia Y il d ° differenza di Y. che significa: Si noti che la seconda differenza di Y (il caso d2) non è la differenza da 2 periodi fa. Piuttosto, è la prima differenza-of-the-prima differenza. che è l'analogo discreto di una derivata seconda, cioè l'accelerazione locale della serie piuttosto che la sua tendenza locale. In termini di y. l'equazione generale di previsione è: Qui i parametri medi in movimento (9528217s) sono definiti in modo tale che i loro segni sono negativi nell'equazione, seguendo la convenzione introdotta da Box e Jenkins. Alcuni autori e software (incluso il linguaggio di programmazione R) definirli in modo che abbiano segni più, invece. Quando i numeri reali sono inseriti nell'equazione, non c'è ambiguità, ma it8217s importante sapere quali convenzione il software utilizza quando si sta leggendo l'output. Spesso i parametri sono indicati lì da AR (1), AR (2), 8230, e MA (1), MA (2), 8230 ecc per identificare il modello ARIMA appropriato per Y. si inizia determinando l'ordine di differenziazione (d) che necessita stationarize serie e rimuovere le caratteristiche lordi di stagionalità, forse in combinazione con una trasformazione varianza stabilizzante come registrazione o sgonfiando. Se ci si ferma a questo punto e prevedere che la serie differenziata è costante, si è semplicemente montato un random walk o modello tendenza casuale. Tuttavia, la serie stationarized potrebbe ancora essere autocorrelato errori, il che suggerisce che un numero di termini AR (p 8805 1) Andor alcuni termini numero MA (q 8805 1) sono necessari anche nell'equazione di previsione. Il processo di determinazione dei valori di p, d, e q che sono meglio per una data serie di tempo saranno discussi nelle sezioni successive di note (i cui collegamenti sono nella parte superiore di questa pagina), ma in anteprima alcuni dei tipi di modelli ARIMA non stagionali che vengono comunemente riscontrato è riportata qui sotto. ARIMA modello autoregressivo (1,0,0) del primo ordine: se la serie è fermo e autocorrelato, forse può essere previsto come multiplo del proprio valore precedente, più una costante. L'equazione di previsione in questo caso è 8230which è Y regredito su se stessa ritardato di un periodo. Questo è un modello constant8221 8220ARIMA (1,0,0). Se la media di Y è zero, allora il termine costante non verrebbe inclusa. Se il coefficiente di pendenza 981 1 è positivo e meno di 1 su grandezza (che deve essere inferiore a 1 a grandezza se Y è fermo), il modello descrive significare-ritornando comportamento in cui il valore prossimi period8217s dovrebbe essere previsto per essere 981 1 volte lontano dalla media come questo period8217s valore. Se 981 1 è negativa, predice significare-ritornando comportamento con alternanza di segni, cioè si prevede anche che Y sarà al di sotto del prossimo periodo media se è al di sopra del periodo di dire questo. In un modello autoregressivo del secondo ordine (ARIMA (2,0,0)), ci sarebbe un termine Y t-2 sulla destra pure, e così via. A seconda dei segni e grandezze dei coefficienti, un (2,0,0) modello ARIMA poteva descrivere un sistema il cui reversione medio avviene in modo sinusoidale oscillante, come il moto di una massa su una molla che viene sottoposta a shock casuali . ARIMA (0,1,0) random walk: Se la serie Y non è fermo, il modello più semplice possibile è un modello casuale, che può essere considerato come un caso limite di un AR (1) modello in cui la autoregressivo coefficiente è uguale a 1, cioè una serie con infinitamente lenta reversione media. L'equazione pronostico per questo modello può essere scritto come: dove il termine costante è la variazione media del periodo a periodo (cioè lungo termine deriva) in Y. Questo modello può essere montato come un modello di regressione non intercetta in cui la prima differenza di Y è la variabile dipendente. Dal momento che include (solo) una differenza non stagionale e di un termine costante, è classificato come un quotARIMA (0,1,0) modello con constant. quot Il caso-roulant senza modello - drift sarebbe un ARIMA (0,1, 0) modello senza costante ARIMA (1,1,0) differenziata modello autoregressivo del primo ordine: Se gli errori di un modello random walk sono autocorrelati, forse il problema può essere risolto con l'aggiunta di un ritardo della variabile dipendente alla previsione equation - - cioè regredendo la prima differenza di Y su se stessa ritardato di un periodo. Ciò produrrebbe la seguente equazione previsione: che possono essere riorganizzate a Questo è un modello autoregressivo del primo ordine con un ordine di differenziazione non stagionale e di un termine costante - i. e. un (1,1,0) modello ARIMA. ARIMA (0,1,1) senza costante livellamento esponenziale semplice: Un'altra strategia per correggere gli errori autocorrelati in un modello random walk è suggerita dal semplice modello di livellamento esponenziale. Ricordiamo che per alcune serie di tempo non stazionaria (ad esempio quelle che presentano fluttuazioni rumorosi intorno a una media lentamente variabile), il modello random walk non esegue così come una media mobile di valori passati. In altre parole, invece di prendere l'osservazione più recente come la previsione della successiva osservazione, è preferibile utilizzare una media degli ultimi osservazioni per filtrare il rumore e più accuratamente stimare la media locale. Il semplice modello di livellamento esponenziale utilizza una media mobile esponenziale ponderata dei valori del passato per ottenere questo effetto. L'equazione pronostico per la semplice modello di livellamento esponenziale può essere scritto in un certo numero di forme matematicamente equivalenti. una delle quali è la cosiddetta forma correction8221 8220error, in cui la precedente previsione viene regolata nella direzione dell'errore fece: Perché e t-1 Y t-1 - 374 t-1 per definizione, questo può essere riscritta come : che è un ARIMA (0,1,1) - senza-costante equazione di previsione con 952 1 1 - 945. Ciò significa che è possibile montare un semplice livellamento esponenziale specificando come un modello ARIMA (0,1,1) senza costante, e il MA stimato (1) coefficiente corrisponde a 1-minus-alfa nella formula SES. Ricordiamo che nel modello SES, l'età media dei dati nelle previsioni 1-periodo-ahead è 1 945. senso che essi tenderanno a restare indietro tendenze o punti di svolta da circa 1 945 periodi. Ne consegue che l'età media dei dati nelle previsioni 1-periodo-prima di un ARIMA (0,1,1) - senza-costante modello è 1 (1-952 1). Così, per esempio, se 952 1 0.8, l'età media è 5. Come 952 1 avvicina 1, il ARIMA (0,1,1) - senza-costante modello diventa un media-molto-lungo termine in movimento, e come 952 1 si avvicina a 0 diventa un modello random walk-senza-drift. What8217s il modo migliore per correggere autocorrelazione: aggiunta termini AR o aggiungendo termini MA Nelle precedenti due modelli di cui sopra, il problema degli errori autocorrelati in un modello casuale è stato fissato in due modi diversi: aggiungendo un valore ritardato della serie differenziata l'equazione o l'aggiunta di un valore ritardato del l'errore di previsione. Quale approccio è meglio Una regola empirica per questa situazione, che sarà discusso più dettagliatamente in seguito, è che autocorrelazione positiva di solito è meglio trattata con l'aggiunta di un termine di AR al modello e negativo autocorrelazione di solito è meglio trattata con l'aggiunta di un MA termine. In serie business e tempo economica, autocorrelazione negativa si pone spesso come un artefatto di differenziazione. (In generale, differenziazione riduce autocorrelazione positiva e può anche provocare un interruttore da positivo a negativo autocorrelazione.) Quindi, il modello ARIMA (0,1,1), in cui la differenziazione è accompagnato da un termine MA, è più spesso utilizzato che un ARIMA (1,1,0) del modello. ARIMA (0,1,1) con costante semplice livellamento esponenziale con la crescita: Con l'implementazione del modello SES come un modello ARIMA, è in realtà guadagnare una certa flessibilità. Prima di tutto, il MA stimata (1) coefficiente è permesso di essere negativo. questo corrisponde ad un fattore di livellamento maggiore di 1 in un modello SES, che normalmente non è consentito dalla procedura model-fitting SES. In secondo luogo, si ha la possibilità di includere un termine costante nel modello ARIMA se lo si desidera, al fine di stimare un andamento medio diverso da zero. L'(0,1,1) modello ARIMA con costante ha l'equazione di previsione: Le previsioni di un periodo a venire da questo modello sono qualitativamente simili a quelle del modello SES, tranne che la traiettoria delle previsioni a lungo termine è in genere un pendenza riga (la cui pendenza è uguale a mu) anziché una linea orizzontale. ARIMA (0,2,1) o (0,2,2) senza costante livellamento esponenziale lineare: lineari modelli di livellamento esponenziale sono modelli ARIMA che utilizzano due differenze non stagionali in collegamento con termini MA. La seconda differenza di una serie Y non è semplicemente la differenza tra Y e si ritardato da due periodi, ma piuttosto è la prima differenza della prima --i. e differenza. il cambiamento-in-the-cambiamento di Y al periodo t. Così, la seconda differenza di Y al periodo t è uguale a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Una seconda differenza di una funzione discreta è analoga ad una derivata seconda di una funzione continua: misura la quotaccelerationquot o quotcurvaturequot in funzione in un dato punto nel tempo. L'(0,2,2) modello ARIMA senza costante prevede che la seconda differenza della serie è uguale a una funzione lineare delle ultime due errori di previsione: che può essere riorganizzato come: dove 952 1 e 952 2 sono il MA (1) e MA (2) coefficienti. Questo è un modello di livellamento esponenziale lineare generale. essenzialmente lo stesso modello di Holt8217s e Brown8217s modello è un caso speciale. Esso utilizza pesato esponenzialmente medie mobili stimare sia a livello locale e una tendenza locale nella serie. Le previsioni a lungo termine di questo modello convergono ad una retta la cui inclinazione dipende dalla tendenza media osservata verso la fine della serie. ARIMA (1,1,2) senza costante smorzata-trend lineare livellamento esponenziale. Questo modello è illustrato nelle slide di accompagnamento sui modelli ARIMA. Si estrapola la tendenza locale alla fine della serie, ma appiattisce fuori a orizzonti previsionali più lunghi per introdurre una nota di cautela, una pratica che ha supporto empirico. Vedi l'articolo sul quotWhy il Damped Trend worksquot da Gardner e McKenzie e l'articolo quotGolden Rulequot da Armstrong et al. per dettagli. In genere è consigliabile attenersi a modelli in cui almeno uno dei p e q non è maggiore di 1, vale a dire non cercare di adattarsi a un modello come ARIMA (2,1,2), in quanto questo rischia di portare a sovradattamento e le questioni che sono discussi in modo più dettagliato nelle note sulla struttura matematica dei modelli ARIMA quotcommon-factorquot. implementazione foglio di calcolo: modelli ARIMA come quelli sopra descritti sono facili da implementare su un foglio di calcolo. L'equazione previsione è semplicemente una equazione lineare che fa riferimento ai valori passati della serie temporale originale e valori passati degli errori. Così, è possibile impostare un foglio di calcolo di previsione ARIMA memorizzando i dati nella colonna A, la formula di previsione nella colonna B, e gli errori (previsioni di dati meno) nella colonna C. La formula di previsione in una cella tipica nella colonna B sarebbe semplicemente un'espressione lineare di riferimento ai valori nelle precedenti file di colonne a e C, moltiplicata per i coefficienti appropriati AR o MA memorizzati nelle celle altrove sul spreadsheet. In pratica la media mobile fornirà una buona stima della media della serie tempo se il media è costante o lentamente cambiando. Nel caso di una media costante, il più grande valore di m darà la migliore stima del mezzo sottostante. Un periodo di osservazione più lungo sarà mediare gli effetti della variabilità. Lo scopo di fornire una più piccola m è quello di permettere la previsione di rispondere ad un cambiamento nel processo sottostante. Per illustrare, proponiamo un insieme di dati che incorpora i cambiamenti nel mezzo di base della serie storica. La figura mostra la serie storica utilizzata per l'illustrazione insieme con la domanda media da cui è stata generata la serie. La media inizia come una costante a 10. Partendo tempo 21, aumenta di una unità in ciascun periodo fino a raggiungere il valore di 20 al momento 30. Allora diventa di nuovo costante. I dati vengono simulato aggiungendo alla media, un rumore casuale da una distribuzione normale con media nulla e deviazione standard 3. I risultati della simulazione sono arrotondati all'intero più vicino. La tabella mostra le osservazioni simulate utilizzati per l'esempio. Quando usiamo la tabella, dobbiamo ricordare che in un dato momento, solo i dati del passato sono noti. Le stime del parametro del modello, per tre diversi valori di m sono mostrati insieme con la media della serie storiche nella figura sottostante. La figura mostra la stima media mobile della media in ogni momento e senza la previsione. Le previsioni dovrebbero spostare le curve di media mobile a destra da punti. Una conclusione è immediatamente evidente dalla figura. Per tutte e tre le stime della media mobile è in ritardo rispetto l'andamento lineare, con il ritardo aumenta con m. Il ritardo è la distanza tra il modello e la stima della dimensione temporale. A causa del ritardo, la media mobile sottovaluta le osservazioni come la media è in aumento. La polarizzazione dello stimatore è la differenza in un momento specifico nel valore medio del modello e il valore medio previsto dalla media mobile. La polarizzazione quando aumenta la media è negativo. Per una media decrescente, la polarizzazione è positivo. Il ritardo nel tempo e la distorsione introdotta nella stima sono funzioni di m. Maggiore è il valore di m. maggiore è la grandezza di lag e polarizzazione. Per una serie sempre crescente con andamento a. i valori di ritardo e distorsione dello stimatore della media è data nelle equazioni seguenti. Le curve di esempio non corrispondono queste equazioni, perché il modello di esempio, non è in continuo aumento, piuttosto che inizia come una costante, modifiche a una tendenza e poi diventa di nuovo costante. Anche le curve di esempio sono influenzate dal rumore. La previsione media mobile di periodi nel futuro è rappresentato spostando le curve a destra. Il ritardo e pregiudizi aumentano proporzionalmente. Le equazioni di sotto indicano il ritardo e la polarizzazione di un periodi di previsione nel futuro rispetto ai parametri del modello. Di nuovo, queste formule sono per una serie temporale con un andamento lineare costante. Non dovremmo essere sorpresi di questo risultato. Lo stimatore media mobile è basata sull'ipotesi di una media costante, e l'esempio ha un andamento lineare nel mezzo durante una parte del periodo di studio. Poiché serie tempo reale raramente esattamente obbedire alle ipotesi di qualsiasi modello, dobbiamo essere preparati per tali risultati. Possiamo anche concludere dalla figura che la variabilità del rumore ha il più grande effetto per piccole m. La stima è molto più volatile per la media mobile 5 rispetto alla media mobile di 20. Abbiamo i desideri contrastanti per aumentare m per ridurre l'effetto della variabilità dovuta al rumore, e di diminuire m per rendere la previsione più sensibile alle variazioni in media. L'errore è la differenza tra i dati effettivi e il valore previsto. Se la serie temporale è veramente un valore costante il valore atteso dell'errore è zero e la varianza dell'errore è costituito da un termine che è una funzione di e un secondo termine che è la varianza del rumore,. Il primo termine è la varianza della media stimata con un campione di m osservazioni, assumendo i dati provengono da una popolazione con una media costante. Questo termine viene minimizzato rendendo m più grande possibile. Una grande m rende la previsione risponde ad un cambiamento nelle serie temporali sottostante. Per rendere la previsione sensibile ai cambiamenti, vogliamo M più piccolo possibile (1), ma questo aumenta la varianza dell'errore. previsione pratica richiede un valore intermedio. Previsione con Excel Il componente aggiuntivo Forecasting implementa le formule media mobile. L'esempio seguente mostra l'analisi fornita dal componente aggiuntivo per i dati di esempio nella colonna B. I primi 10 osservazioni sono indicizzati -9 attraverso 0. Rispetto alla tabella di cui sopra, gli indici di periodo sono spostati da -10. I primi dieci osservazioni forniscono i valori di avvio per la stima e vengono utilizzati per calcolare la media mobile per il periodo 0. Il MA (10) della colonna (C) mostra le medie mobili calcolate. La media mobile parametro m è nella cella C3. La parte anteriore (1) colonna (D) mostra una previsione per un periodo nel futuro. L'intervallo di previsione è in cella D3. Quando l'intervallo di tempo viene modificato in un numero maggiore i numeri nella colonna Fore sono spostati verso il basso. La colonna Err (1) (E) mostra la differenza tra l'osservazione e la previsione. Ad esempio, l'osservazione al tempo 1 è 6. Il valore previsto fatta dalla media mobile al tempo 0 è 11.1. L'errore quindi è -5.1. La deviazione standard e media deviazione media (MAD) sono calcolati in celle E6 e E7 respectively.2.1 modello a media mobile (modelli MA) modelli di serie tempo noti come modelli ARIMA possono includere termini autoregressivi eo movimento termini medi. In settimana 1, abbiamo imparato un termine autoregressivo in un modello di serie temporale per la variabile x t è un valore ritardato di x t. Per esempio, un ritardo 1 termine autoregressivo è x t-1 (moltiplicato per un coefficiente). Questa lezione definisce lo spostamento termini medi. Un termine media mobile in un modello di serie storica è un errore di passato (moltiplicata per un coefficiente). Sia (wt Overset N (0, sigma2w)), il che significa che la w t sono identicamente, indipendentemente distribuite, ciascuna con una distribuzione normale con media 0 e la stessa varianza. Il modello a media mobile 1 ° ordine, indicato con MA (1) è (xt mu peso theta1w) L'ordine di 2 ° modello a media mobile, indicato con MA (2) è (mu XT peso theta1w theta2w) La q ° ordine modello a media mobile , indicato con MA (q) è (MU XT WT theta1w theta2w punti thetaqw) Nota. Molti libri di testo e programmi software definiscono il modello con segni negativi prima dei termini. Ciò non modificare le proprietà teoriche generali del modello, anche se non capovolgere i segni algebrici di valori dei coefficienti stimati ei termini (unsquared) nelle formule per ACFS e varianze. È necessario controllare il software per verificare se vi siano segni negativi o positivi sono stati utilizzati al fine di scrivere correttamente il modello stimato. R utilizza segnali positivi nel suo modello di base, come facciamo qui. Proprietà teoriche di una serie storica con un MA (1) Modello nota che l'unico valore diverso da zero nella ACF teorico è di lag 1. Tutti gli altri autocorrelazioni sono 0. Quindi un ACF campione con un autocorrelazione significativa solo in ritardo 1 è un indicatore di un possibile MA (1) modello. Per gli studenti interessati, prove di queste proprietà sono in appendice a questo volantino. Esempio 1 Supponiamo che un MA (1) modello è x t 10 w t 0,7 w t-1. dove (WT overset N (0,1)). Così il coefficiente 1 0.7. L'ACF teorica è data da una trama di questa ACF segue. La trama appena mostrato è l'ACF teorico per un MA (1) con 1 0.7. In pratica, un campione abituato di solito forniscono un modello così chiara. Utilizzando R, abbiamo simulato n 100 valori di esempio utilizzando il modello x t 10 w t 0,7 w t-1 dove w t IID N (0,1). Per questa simulazione, un appezzamento serie storica dei dati di esempio segue. Non possiamo dire molto da questa trama. L'ACF campione per i dati simulati segue. Vediamo un picco in ritardo 1 seguito da valori generalmente non significativi per ritardi passato 1. Si noti che il campione ACF non corrisponde al modello teorico della MA sottostante (1), vale a dire che tutte le autocorrelazioni per i ritardi del passato 1 saranno 0 . un campione diverso avrebbe un po 'diverso ACF esempio riportato di seguito, ma probabilmente hanno le stesse caratteristiche generali. Theroretical proprietà di una serie storica con un modello MA (2) Per la (2) il modello MA, proprietà teoriche sono i seguenti: Si noti che gli unici valori diversi da zero nel ACF teorica sono per ritardi 1 e 2. Autocorrelazioni per ritardi superiori sono 0 . Così, un ACF campione con autocorrelazioni significativi a ritardi 1 e 2, ma autocorrelazioni non significative per ritardi più elevato indica una possibile mA (2) modello. iid N (0,1). I coefficienti sono 1 0,5 e 2 0.3. Poiché si tratta di un MA (2), l'ACF teorica avrà valori diversi da zero solo in caso di ritardi 1 e 2. I valori delle due autocorrelazioni diversi da zero sono un grafico della ACF teorica segue. è come quasi sempre accade, i dati di esempio solito si comportano abbastanza così perfettamente come teoria. Abbiamo simulato n 150 valori di esempio per il modello x t 10 w t 0,5 w t-1 .3 w t-2. dove w t iid N (0,1). La trama serie storica dei dati segue. Come con la trama serie per la MA (1) i dati di esempio, non puoi dire molto da esso. L'ACF campione per i dati simulati segue. Il modello è tipico per le situazioni in cui un modello MA (2) può essere utile. Ci sono due picchi statisticamente significative a ritardi 1 e 2 seguiti da valori non significativi per altri ritardi. Si noti che a causa di errore di campionamento, l'ACF campione non corrisponde al modello teorico esattamente. ACF per General MA (q) Models Una proprietà di modelli MA (q), in generale, è che ci sono autocorrelazioni diversi da zero per i primi ritardi Q e autocorrelazioni 0 per tutti i GAL gt q. Non unicità di collegamento tra i valori di 1 e (rho1) in MA (1) Modello. Nella (1) Modello MA, per qualsiasi valore di 1. il reciproco 1 1 dà lo stesso valore per esempio, utilizzare 0,5 per 1. e quindi utilizzare 1 (0,5) 2 per 1. Youll ottenere (rho1) 0,4 in entrambi i casi. Per soddisfare una limitazione teorica chiamato invertibilità. abbiamo limitare MA (1) modelli di avere valori con valore assoluto inferiore 1. Nell'esempio appena dato, 1 0.5 sarà un valore di parametro ammissibile, che non sarà 1 10.5 2. Invertibilità dei modelli MA Un modello MA si dice che sia invertibile se è algebricamente equivalente a un modello AR ordine infinito convergenti. Facendo convergere, si intende che i coefficienti AR diminuiscono a 0 mentre ci muoviamo indietro nel tempo. Invertibilità è una limitazione programmata nel software di serie storiche utilizzate per stimare i coefficienti dei modelli con i termini MA. La sua non è una cosa che controlliamo per l'analisi dei dati. Ulteriori informazioni sul restrizione invertibilit'a per MA (1) modelli è riportato in appendice. Avanzate teoria Note. Per un modello MA (q) con un determinato ACF, vi è un solo modello invertibile. La condizione necessaria per invertibilità è che i coefficienti hanno valori tali che l'equazione 1- 1 y-. - Q q y 0 ha soluzioni per y che non rientrano nel cerchio unitario. R Codice per gli esempi in Esempio 1, abbiamo tracciato l'ACF teorica del modello x t 10 w t. 7W t-1. e poi simulato n 150 valori di questo modello e tracciato le serie temporali del campione e l'ACF campione per i dati simulati. I comandi R utilizzati per tracciare la ACF teoriche sono state: acfma1ARMAacf (Mac (0,7), lag. max10) 10 ritardi di ACF per MA (1) con theta1 0,7 lags0: 10 crea una variabile denominata ritardi che va da 0 a 10. trama (ritardi, acfma1, xlimc (1,10), ylabr, typeh, principale ACF per MA (1) con theta1 0,7) abline (H0) aggiunge un asse orizzontale per la trama il primo comando determina l'ACF e lo memorizza in un oggetto chiamato acfma1 (la nostra scelta del nome). Il comando plot (il 3 ° comando) trame in ritardo rispetto ai valori ACF per ritardi da 1 a 10. Il parametro ylab Contrassegni l'asse Y e il parametro principale mette un titolo sul terreno. Per visualizzare i valori numerici della ACF è sufficiente utilizzare il comando acfma1. La simulazione e le trame sono state fatte con i seguenti comandi. xcarima. sim (N150, elenco (Mac (0,7))) Simula n 150 valori da MA (1) xxc10 aggiunge 10 per rendere medi default 10. simulazione a significare 0. plot (x, TypeB, mainSimulated MA (1) i dati) ACF (x, xlimc (1,10), mainACF per dati campione simulati) nell'Esempio 2, abbiamo tracciato l'ACF teorica del modello xt 10 wt .5 w t-1 .3 w t-2. e poi simulato n 150 valori di questo modello e tracciato le serie temporali del campione e l'ACF campione per i dati simulati. I comandi R utilizzati sono stati acfma2ARMAacf (Mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (ritardi, acfma2, xlimc (1,10), ylabr, typeh, principale ACF per MA (2) con theta1 0.5, theta20.3) abline (H0) xcarima. sim (N150, l'elenco (Mac (0,5, 0,3))) xxc10 plot (x, TypeB, principale simulato MA (2) Serie) ACF (x, xlimc (1,10), mainACF per simulato MA (2) dati) Appendice: prova di proprietà di MA (1) per gli studenti interessati, qui ci sono prove per le proprietà teoriche del (1) modello MA. Varianza: (testo (xt) testo (mu peso theta1 w) 0 di testo (in peso) di testo (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Quando h 1, l'espressione precedente 1 w 2. Per ogni h 2, l'espressione precedente 0 . il motivo è che, per definizione di indipendenza della wt. E (w k w j) 0 per ogni k j. Inoltre, perché la w t hanno media 0, E (w j w j) E (w j 2) w 2. Per una serie temporale, applicare questo risultato per ottenere l'ACF cui sopra. Un modello MA invertibile è uno che può essere scritta come modello AR ordine infinito che converge in modo che i coefficienti AR convergono a 0, mentre ci muoviamo infinitamente indietro nel tempo. Bene dimostrare invertibilità per la (1) Modello MA. Abbiamo poi sostituto relazione (2) per w t-1 nell'equazione (1) (3) (ZT WT theta1 (z - theta1w) peso theta1z - theta2w) Al tempo t-2. l'equazione (2) diventa Abbiamo poi rapporto sostituto (4) per w t-2 nell'equazione (3) (ZT peso theta1 z - theta21w WT theta1z - theta21 (z - theta1w) WT theta1z - theta12z theta31w) Se dovessimo continuare a ( infinitamente), otterremmo il modello AR ordine infinito (ZT peso theta1 z - theta21z theta31z - theta41z punti) Nota però, che se 1 1, i coefficienti moltiplicando i ritardi di z aumenterà (infinitamente) in termini di dimensioni, come ci muoviamo nel tempo. Per evitare questo, abbiamo bisogno di 1 LT1. Questa è la condizione per un MA (1) Modello invertibile. Infinite Modello di ordine MA In settimana 3, e vedere che un AR (1) modello può essere convertito in un modello di ordine MA infinite: (xt - mu peso phi1w phi21w punti phik1 w punti riassumono phij1w) Questa somma dei termini di rumore bianco del passato è conosciuto come la rappresentazione causale di un AR (1). In altre parole, x t è un tipo speciale di MA con un numero infinito di termini che vanno indietro nel tempo. Questo è chiamato un ordine infinito MA o MA (). Un ordine MA finito è un AR ordine infinito ed ogni AR ordine finito è un ordine MA infinita. Ricordiamo a settimana 1, abbiamo notato che un requisito per un AR fisso (1) è che 1 LT1. Consente di calcolare il Var (x t) utilizzando la rappresentazione causale. Questo ultimo passo utilizza un fatto di base sulla serie geometrica che richiede (phi1lt1) altrimenti i diverge serie. Navigazione

Comments

Popular Posts