Moving Media Previsione Errore


Moving Average Introduzione Previsione. Come si può immaginare che stiamo guardando alcuni degli approcci più primitive di previsione. Ma si spera che questi sono almeno un'introduzione utile per alcuni dei problemi informatici relativi all'attuazione previsioni nei fogli di calcolo. In questo filone si continuerà avviando all'inizio e iniziare a lavorare con Moving previsioni medie. Spostamento previsioni medie. Tutti conoscono lo spostamento previsioni medie indipendentemente dal fatto che credono di essere. Tutti gli studenti universitari fanno loro tutto il tempo. Pensa ai tuoi punteggi dei test in un corso dove si sta andando ad avere quattro prove durante il semestre. Consente di assumere hai un 85 sul vostro primo test. Che cosa prevedere per il secondo punteggio test Cosa pensi che la tua insegnante di prevedere per il prossimo punteggio test Cosa pensi che i tuoi amici potrebbero prevedere per il prossimo punteggio test Cosa pensi che i tuoi genitori potrebbero prevedere per il prossimo punteggio del test Indipendentemente tutto il blabbing si potrebbe fare ai tuoi amici e genitori, e il vostro insegnante è molto probabile che si aspettano di ottenere qualcosa nella zona del 85 che avete appena ottenuto. Bene, ora lascia supporre che, nonostante la vostra auto-promozione per i tuoi amici, ti sopravvalutare se stessi e capire che si può studiare meno per la seconda prova e così si ottiene un 73. Ora, che sono tutti di interessati e indifferente andare a anticipare avrete sulla vostra terza prova ci sono due approcci molto probabili per loro di sviluppare una stima indipendentemente dal fatto che condivideranno con voi. Essi possono dire a se stessi, quotThis ragazzo è sempre soffia il fumo delle sue intelligenza. Hes andando ad ottenere un altro 73 se hes fortuna. Forse i genitori cercano di essere più solidali e dire, quotWell, finora youve acquistasti un 85 e un 73, quindi forse si dovrebbe capire su come ottenere circa una (85 73) 2 79. Non so, forse se l'avete fatto meno festa e werent scodinzolante la donnola tutto il luogo e se hai iniziato a fare molto di più lo studio si potrebbe ottenere una maggiore score. quot Entrambe queste stime sono in realtà in movimento le previsioni medie. Il primo sta usando solo il tuo punteggio più recente di prevedere le prestazioni future. Questo si chiama una previsione media mobile utilizzando uno periodo di dati. Il secondo è anche una previsione media mobile ma utilizzando due periodi di dati. Lascia supporre che tutte queste persone busting sulla vostra grande mente hanno sorta di voi incazzato e si decide di fare bene sulla terza prova per le proprie ragioni e di mettere un punteggio più alto di fronte al vostro quotalliesquot. Si prende il test e il punteggio è in realtà un 89 Tutti, compreso te stesso, è impressionato. Così ora avete la prova finale del semestre in arrivo e come al solito si sente il bisogno di pungolare tutti a fare le loro previsioni su come youll fare l'ultimo test. Beh, speriamo che si vede il motivo. Ora, si spera si può vedere il modello. Quale credi sia la più accurata Whistle mentre lavoriamo. Ora torniamo alla nostra nuova impresa di pulizie ha iniziato dal sorellastra estraniato chiamato Whistle mentre lavoriamo. Hai alcuni dati di vendita del passato rappresentata dalla sezione seguente da un foglio di calcolo. Per prima cosa presentiamo i dati per un periodo di tre movimento previsione media. La voce per cella C6 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C7-C11. Si noti come le mosse medi durante il più recente dei dati storici, ma utilizza esattamente i tre periodi più recenti disponibili per ogni previsione. Si dovrebbe anche notare che noi non veramente bisogno di fare le previsioni per i periodi precedenti al fine di sviluppare la nostra più recente previsione. Questo è sicuramente diverso dal modello di livellamento esponenziale. Ive ha incluso il predictionsquot quotpast perché li useremo nella pagina web successiva per misurare la previsione di validità. Ora voglio presentare i risultati analoghi per un periodo di movimento previsione media di due. La voce per cella C5 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C6-C11. Notate come ora solo i due più recenti pezzi di dati storici sono utilizzati per ogni previsione. Ancora una volta ho incluso il predictionsquot quotpast a scopo illustrativo e per un uso successivo nella convalida del tempo. Alcune altre cose che sono importanti per notare. Per un periodo di m-movimento previsione media solo il m valori dei dati più recenti sono usati per fare la previsione. Nient'altro è necessario. Per un periodo di m-movimento previsione media, quando si effettua predictionsquot quotpast, si noti che la prima previsione si verifica nel periodo m 1. Entrambi questi aspetti sarà molto significativo quando sviluppiamo il nostro codice. Sviluppare la Moving Average funzione. Ora abbiamo bisogno di sviluppare il codice per la previsione media mobile che può essere utilizzato in modo più flessibile. Il codice segue. Si noti che gli ingressi sono per il numero di periodi che si desidera utilizzare nella previsione e la matrice dei valori storici. È possibile memorizzare in qualsiasi cartella di lavoro che si desidera. Media mobile Funzione (storici, NumberOfPeriods) As Single Dichiarazione e inizializzazione delle variabili ARTICOLO Dim come variante Dim contatore come Integer Dim accumulo As Single Dim HistoricalSize come numero intero inizializzazione delle variabili contatore 1 Accumulo 0 Determinazione della dimensione della matrice storica HistoricalSize Historical. Count per il contatore 1 Per NumberOfPeriods accumulare il numero appropriato di più recenti valori precedentemente osservati accumulo accumulazione storica (HistoricalSize - NumberOfPeriods Counter) media mobile accumulo NumberOfPeriods il codice verrà spiegato in classe. Si desidera posizionare la funzione sopra il foglio in modo che il risultato del calcolo appare dove dovrebbe come il following. In praticare la media mobile fornirà una buona stima della media della serie tempo se la media è costante o lentamente variabile. Nel caso di una media costante, il più grande valore di m darà la migliore stima del mezzo sottostante. Un periodo di osservazione più lungo sarà mediare gli effetti della variabilità. Lo scopo di fornire una più piccola m è quello di permettere la previsione di rispondere ad un cambiamento nel processo sottostante. Per illustrare, proponiamo un insieme di dati che incorpora i cambiamenti nel mezzo di base della serie storica. La figura mostra la serie storica utilizzata per l'illustrazione insieme con la domanda media da cui è stata generata la serie. La media inizia come una costante a 10. Partendo tempo 21, aumenta di una unità in ciascun periodo fino a raggiungere il valore di 20 al momento 30. Allora diventa di nuovo costante. I dati vengono simulato aggiungendo alla media, un rumore casuale da una distribuzione normale con media nulla e deviazione standard 3. I risultati della simulazione sono arrotondati all'intero più vicino. La tabella mostra le osservazioni simulate utilizzati per l'esempio. Quando usiamo la tabella, dobbiamo ricordare che in un dato momento, solo i dati del passato sono noti. Le stime del parametro del modello, per tre diversi valori di m sono mostrati insieme con la media della serie storiche nella figura sottostante. La figura mostra la stima media mobile della media in ogni momento e senza la previsione. Le previsioni dovrebbero spostare le curve di media mobile a destra da punti. Una conclusione è immediatamente evidente dalla figura. Per tutte e tre le stime della media mobile è in ritardo rispetto l'andamento lineare, con il ritardo aumenta con m. Il ritardo è la distanza tra il modello e la stima della dimensione temporale. A causa del ritardo, la media mobile sottovaluta le osservazioni come la media è in aumento. La polarizzazione dello stimatore è la differenza in un momento specifico nel valore medio del modello e il valore medio previsto dalla media mobile. La polarizzazione quando aumenta la media è negativo. Per una media decrescente, la polarizzazione è positivo. Il ritardo nel tempo e la distorsione introdotta nella stima sono funzioni di m. Maggiore è il valore di m. maggiore è la grandezza di lag e polarizzazione. Per una serie sempre crescente con andamento a. i valori di ritardo e distorsione dello stimatore della media è data nelle equazioni seguenti. Le curve di esempio non corrispondono queste equazioni, perché il modello di esempio, non è in continuo aumento, piuttosto che inizia come una costante, modifiche a una tendenza e poi diventa di nuovo costante. Anche le curve di esempio sono influenzate dal rumore. La previsione media mobile di periodi nel futuro è rappresentato spostando le curve a destra. Il ritardo e pregiudizi aumentano proporzionalmente. Le equazioni di sotto indicano il ritardo e la polarizzazione di un periodi di previsione nel futuro rispetto ai parametri del modello. Di nuovo, queste formule sono per una serie temporale con un andamento lineare costante. Non dovremmo essere sorpresi di questo risultato. Lo stimatore media mobile è basata sull'ipotesi di una media costante, e l'esempio ha un andamento lineare nel mezzo durante una parte del periodo di studio. Poiché serie tempo reale raramente esattamente obbedire alle ipotesi di qualsiasi modello, dobbiamo essere preparati per tali risultati. Possiamo anche concludere dalla figura che la variabilità del rumore ha il più grande effetto per piccole m. La stima è molto più volatile per la media mobile 5 rispetto alla media mobile di 20. Abbiamo i desideri contrastanti per aumentare m per ridurre l'effetto della variabilità dovuta al rumore, e di diminuire m per rendere la previsione più sensibile alle variazioni in media. L'errore è la differenza tra i dati effettivi e il valore previsto. Se la serie temporale è veramente un valore costante il valore atteso dell'errore è zero e la varianza dell'errore è costituito da un termine che è una funzione di e un secondo termine che è la varianza del rumore,. Il primo termine è la varianza della media stimata con un campione di m osservazioni, assumendo i dati provengono da una popolazione con una media costante. Questo termine viene minimizzato rendendo m più grande possibile. Una grande m rende la previsione risponde ad un cambiamento nelle serie temporali sottostante. Per rendere la previsione sensibile ai cambiamenti, vogliamo M più piccolo possibile (1), ma questo aumenta la varianza dell'errore. previsione pratica richiede un valore intermedio. Previsione con Excel Il componente aggiuntivo Forecasting implementa le formule media mobile. L'esempio seguente mostra l'analisi fornita dal componente aggiuntivo per i dati di esempio nella colonna B. I primi 10 osservazioni sono indicizzati -9 attraverso 0. Rispetto alla tabella di cui sopra, gli indici di periodo sono spostati da -10. I primi dieci osservazioni forniscono i valori di avvio per la stima e vengono utilizzati per calcolare la media mobile per il periodo 0. Il MA (10) della colonna (C) mostra le medie mobili calcolate. La media mobile parametro m è nella cella C3. La parte anteriore (1) colonna (D) mostra una previsione per un periodo nel futuro. L'intervallo di previsione è in cella D3. Quando l'intervallo di tempo viene modificato in un numero maggiore i numeri nella colonna Fore sono spostati verso il basso. La colonna Err (1) (E) mostra la differenza tra l'osservazione e la previsione. Ad esempio, l'osservazione al tempo 1 è 6. Il valore previsto fatta dalla media mobile al tempo 0 è 11.1. L'errore quindi è -5.1. La deviazione standard e media deviazione media (MAD) sono calcolati in celle E6 e E7 respectively. Moving medie mobili medie con set di dati convenzionali il valore medio è spesso il primo, e uno dei più utili, statistiche di riepilogo per calcolare. Quando i dati sono in forma di una serie temporale, serie significano è una misura utile, ma non riflette la natura dinamica dei dati. I valori medi calcolati su periodi di cortocircuito, sia che precede il periodo corrente o incentrate sul periodo attuale, sono spesso più utili. Poiché tali valori medi variano, o spostare, come le mosse del periodo corrente da tempo t 2, t 3. ecc sono conosciuti come le medie mobili (MAS). Una media mobile semplice è (in genere) la media non ponderata dei k valori precedenti. Una media mobile ponderata esponenzialmente è essenzialmente lo stesso come semplice media mobile, ma con contributi alla media ponderata per la loro vicinanza al tempo corrente. Perché non ce n'è uno, ma tutta una serie di medie per ogni serie in movimento, l'insieme di Mas può si essere tracciata su grafici, ha analizzato come una serie, e utilizzato nella modellazione e previsione. Una gamma di modelli può essere costruito utilizzando medie mobili, e questi sono conosciuti come modelli MA. Se tali modelli sono combinati con autoregressivo (AR) modelli modelli compositi risultanti sono noti come modelli ARMA o ARIMA (l'io è per integrato). Semplici media mobile Da una serie temporale possono essere considerate come un insieme di valori,, t 1,2,3,4, n la media di questi valori possono essere calcolati. Se assumiamo che n è abbastanza grande, e selezionare un intero k che è molto più piccolo di n. possiamo calcolare un insieme di calze blocco, o semplici medie mobili (dell'ordine k): Ogni misura rappresenta la media dei valori dei dati in un intervallo di k osservazioni. Si noti che la prima possibile MA di ordine k GT0 è che per t k. Più in generale possiamo cadere il pedice in più nelle espressioni sopra e scrivere: Questo si afferma che la media stimata al tempo t è la media semplice del valore osservato al tempo t e le precedenti fasi k -1 tempo. Se i pesi vengono applicate che diminuire il contributo di osservazioni che sono più lontani nel tempo, la media mobile si dice che sia in modo esponenziale levigata. Le medie mobili sono spesso utilizzati come forma di previsione, per cui il valore stimato di una serie al tempo t 1, S t1. è presa come MA per il periodo fino al tempo t. per esempio. oggi stima si basa su una media di precedenti valori registrati fino ad includere ieri (per i dati di tutti i giorni). Semplici medie mobili può essere visto come una forma di lisciatura. Nell'esempio illustrato di seguito, il set di dati di inquinamento atmosferico mostrato nella introduzione a questo argomento è stato aumentato da un movimento linea 7 giorni di media (MA), mostrato qui in rosso. Come si può vedere, la linea MA appiana i picchi e depressioni nei dati e può essere molto utile per identificare tendenze. L'attaccante-calcolo della formula standard significa che i primi punti k -1 di dati non hanno alcun valore MA, ma da allora in poi i calcoli estendersi al punto di dati finale della serie. PM10 valori medi al giorno, Greenwich fonte: London Air Quality Network, londonair. org. uk Uno dei motivi per il calcolo semplici medie mobili nel modo descritto è che consente valori da calcolare per tutte le fasce orarie da tempo tk fino ad oggi, e come si ottiene una nuova misurazione per il tempo t 1, il MA per il tempo t 1 può essere aggiunto al set già calcolato. Questo fornisce una semplice procedura per set di dati dinamici. Tuttavia, ci sono alcuni problemi con questo approccio. È ragionevole sostenere che il valore medio degli ultimi 3 periodi, per esempio, deve essere posizionato al tempo t -1, non il tempo t. e per un MA su un numero pari di periodi forse dovrebbe essere posizionata a metà punto tra due intervalli di tempo. Una soluzione a questo problema è quello di utilizzare i calcoli MA centrato, in cui il MA al tempo t è la media di un insieme di valori simmetrica intorno t. Nonostante i suoi evidenti meriti, questo approccio non è generalmente utilizzato perché richiede che i dati sono disponibili per gli eventi futuri, che potrebbero non essere il caso. Nei casi in cui l'analisi è interamente di una serie esistente, l'uso di centrata Mas può essere preferibile. medie mobili semplici possono essere considerati come una forma di smoothing eliminando alcune componenti ad alta frequenza di una serie temporale ed evidenziando (ma non rimozione) tendenze in modo simile alla nozione generale di filtraggio digitale. Infatti, le medie mobili sono una forma di filtro lineare. E 'possibile applicare un calcolo media mobile ad una serie già levigata, cioè l'attenuazione o il filtraggio di una serie già levigata. Ad esempio, con una media mobile di ordine 2, possiamo considerare come siano calcolate utilizzando pesi, in modo che il MA in x 2 x 0,5 1 0,5 x 2. Analogamente, il MA in x 3 0,5 x 2 x 0,5 3. Se applicare un secondo livello di finitura o di filtraggio, abbiamo 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0.25 x 1 0,5 x 2 0,25 x 3 cioè il filtraggio a 2 stadi processo (o la convoluzione) ha prodotto una simmetrica variabile ponderata media mobile, con i pesi. circonvoluzioni multipli possono produrre abbastanza complessi medie mobili ponderate, alcuni dei quali sono stati trovati di particolare utilità nei settori specializzati, come ad esempio nei calcoli di assicurazione sulla vita. Le medie mobili possono essere utilizzati per rimuovere gli effetti periodici se calcolata con la lunghezza della periodicità come noto. Ad esempio, con dati mensili variazioni stagionali spesso possono essere rimossi (se questo è l'obiettivo) si applicano con una media mobile di 12 mesi simmetrica con tutti i mesi ponderati allo stesso modo, tranne il primo e l'ultimo, che sono ponderati in base 12. Questo perché non ci sarà di 13 mesi nel modello simmetrico (ora corrente, t -. 6 mesi). Il totale è diviso per 12. Procedure simili può essere adottato alcuna periodicità ben definita. medie mobili ponderate in modo esponenziale (EWMA) con la semplice formula media mobile: tutte le osservazioni sono ugualmente ponderato. Se abbiamo chiamato questi pesi uguali, alfa t. ciascuno dei pesi k sarebbe uguale 1 k. quindi la somma dei pesi sarebbe 1, e la formula sarebbe: Abbiamo già visto che più applicazioni di questo risultato processo nei pesi diversi. Con medie mobili esponenziale ponderata il contributo al valore medio dalle osservazioni che sono più rimossi in tempo è deliberata ridotta, sottolineando in tal modo gli eventi più recenti (locali). Essenzialmente un parametro smoothing, 0LT alfa LT1, viene introdotto, e la formula rivisto per: Una versione simmetrica di questa formula sarebbe la forma: Se i pesi nel modello simmetrico vengono selezionati come i termini dei termini di espansione binomiale, (1212) 2q. che si somma a 1, e come q diventa grande, si approssimare la distribuzione normale. Questa è una forma di ponderazione kernel, con la recitazione Binominale come funzione del kernel. La convoluzione due fasi descritta nel paragrafo precedente, è proprio questa disposizione, con q 1, cedendo i pesi. In livellamento esponenziale è necessario utilizzare un insieme di pesi che somma a 1 e che riducono dimensioni geometricamente. I pesi utilizzati sono in genere di forma: Per dimostrare che questi pesi sommano a 1, prendere in considerazione l'espansione di 1 come una serie. Siamo in grado di scrivere e ampliare l'espressione tra parentesi con la formula binomiale (1- x) p. dove x (1-) e p -1, che assicura: Questo fornisce quindi una forma di ponderata media mobile della forma: Questa somma può essere scritta come una relazione di ricorrenza: il che semplifica notevolmente il calcolo, ed evita il problema che il regime ponderazione va rigorosamente infinito per i pesi sommano a 1 (per piccoli valori di alfa. questo non è tipicamente il caso). La notazione usata da diversi autori varia. Alcuni usano la lettera S per indicare che la formula è essenzialmente una variabile levigato, e scrivere: considerando che la letteratura teoria del controllo utilizza spesso Z invece di S per i valori in modo esponenziale ponderata o levigate (vedi, per esempio, Lucas e Saccucci 1990, luc1 , e il sito web del NIST per maggiori dettagli e lavorato esempi). Le formule sopra citati derivano dal lavoro di Roberts (1959, Rob1), ma Hunter (1986, HUN1) utilizza un'espressione della forma: che può essere più appropriato per l'uso in alcune procedure di controllo. Con alpha 1 la stima media è semplicemente il valore misurato (o il valore del dato precedente). Con 0,5 la stima è la media mobile semplice delle misure attuali e precedenti. In previsione modelli il valore, S t. viene spesso utilizzato come stima o un valore meteo per il periodo di tempo successivo, cioè come la stima per x al tempo t 1. Così abbiamo: Questo mostra che il valore di previsione al tempo t 1 è una combinazione della media mobile ponderata esponenzialmente precedente più un componente che rappresenta la pesata errore di predizione, epsilon. al tempo t. Assumendo una serie temporale è dato e si richiede una previsione, è richiesto un valore per alfa. Questo può essere definita sulla base dei dati esistenti, valutando la somma degli errori di previsione quadrati ottenere con diversi valori di alfa per ogni t 2,3. modificando la prima stima di essere il primo valore di dati osservati, x 1. In applicazioni di controllo il valore di alfa è importante che viene utilizzato per la determinazione dei limiti di controllo superiore e inferiore, e colpisce la tiratura media (ARL) previsto prima che questi limiti di controllo sono rotti (sotto l'ipotesi che la serie temporale rappresenta un insieme di casuale, identicamente distribuite variabili indipendenti con varianza comune). In queste circostanze la varianza della statistica di controllo: è (Lucas e Saccucci, 1990): Controllo limiti sono di solito impostati come multipli fissi di questa varianza asintotica, per esempio - 3 volte la deviazione standard. Se alfa 0,25, per esempio, ed i dati monitorati si assume di avere una distribuzione normale, N (0,1), quando nel controllo, i limiti di controllo saranno - 1.134 e il processo raggiungerà uno o altro limite in 500 passi in media. Lucas e Saccucci (1990 luc1) derivano le ARLS per una vasta gamma di valori alfa e sotto diverse ipotesi utilizzando le procedure di Markov Chain. Essi tabulare i risultati, compresa la fornitura ARLS quando la media del processo di controllo è stato spostato da un multiplo della deviazione standard. Ad esempio, con uno spostamento di 0,5 con alpha 0.25 l'ARL è inferiore a 50 fasi temporali. Gli approcci sopra descritti è noto come singolo livellamento esponenziale. le procedure sono applicate una volta alla serie tempo e poi analisi o processi di controllo vengono effettuate sul dataset lisciato risultante. Se il set di dati include una tendenza Andor componenti stagionali, a due o tre stadi di livellamento esponenziale può essere applicato come un mezzo per rimuovere (esplicitamente modellazione) questi effetti (vedi più avanti, la sezione sulle previsioni. Di seguito, e il NIST ha lavorato esempio). CHA1 Chatfield C (1975) L'analisi dei tempi della serie: teoria e pratica. Chapman and Hall, London HUN1 Hunter J S (1986) La media mobile esponenziale ponderata. J of Technology Qualità, 18, 203-210 luc1 Lucas J M, Saccucci M S (1990) esponenziale mobile ponderata sistemi basati sulla media di controllo: Proprietà e miglioramenti. Technometrics, 32 (1), 1-12 Rob1 Roberts S W (1959) controllo grafico test basati su medie mobili geometriche. Technometrics, 1, 239-250

Comments

Popular Posts